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Based on Bohmian quantum trajectory theory, an investigation of electron scattering in a thin crystal 

has been performed. A time-independent interaction potential was employed to describe electron scattering 
from model crystal. Quantum trajectories were calculated by a numerical solution of the time-dependent 
Schrödinger equation. The probability density functions and quantum trajectories representing the electron 
diffraction in real space were obtained from the calculation. The quantum trajectories provide an intuitive 
dynamics of the interaction process during the electron diffraction. 

 
1. Introduction 

Techniques with electron spectroscopy, diffraction 
and microscopy have played an important role in many 
fields for materials analysis. Among them many are 
based on electron diffraction phenomena, such as low 
energy electron diffraction [1], transmission electron 
diffraction [2], electron backscatter diffraction [3], Auger 
electron diffraction and photoelectron diffraction. 
Analysis of the measured data generally requires the 
understanding of electron-solid interaction process. 
Monte Carlo method has been widely used to study the 
electron-solid interaction for amorphous and 
ploycrystalline solid with great success for electron 
spectroscopic study [4-6]. However such a Monte Carlo 
simulation of electron trajectory is basically a classical 
method, with which the crystal structural information 
and the electron coherent scattering are hardly to be 
taken into account. On the other hand, the quantum 
mechanical methods, such as multislice method, based 
on wave nature description of particle for coherent 
elastic scattering have been successful to derive 
diffraction effects. The classical non-coherent and 
quantum mechanical methods have their own advantages 
and disadvantages. The difficulty to combine both 
natures of particle and wave in theoretical investigation 
of electron interaction with crystalline solid comes from 

the wave-particle duality. The single electron buildup of 
an interference pattern experiment [7] has clearly 
demonstrated the particle trajectory character with 
probability wave motion behavior of electrons. An 
alternative theoretical description is therefore expected to 
represent the wave-particle duality nature of microscopic 
particle, while offer a physical picture of diffraction 
phenomena in term of the well defined trajectories of 
microscopic particle. Such formalism for simulation of 
electron-matter interaction is able to be established based 
on the Bohmian quantum trajectory theory. 

The quantum trajectory theory was firstly proposed 
by de Broglie [8] in 1927 and then developed by Bohm 
[9,10]. The basis of this theory is the standard quantum 
mechanics, while the concept of particle is introduced 
into the quantal description of nature [9]. The theory not 
only accounts for the quantum phenomena accurately but 
also provides an intuitive interpretation of interference 
according to particle trajectory. The theory has been 
recently applied to several physical and chemical 
problems. Philippidis et al. [11] have simulated the 
electron double-slit experiment and Sanz et al. have 
studied the atom-surface scattering to reinterpret the 
atom diffraction patterns [12] and the rainbow effect [13]. 
The objective of the current work is to study the 
dynamical process of electron diffraction in solid. The 
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time dependent wave function was obtained by 
numerically solving the time-dependent Schrödinger 
equation for a model thin crystal, and then the dynamic 
process of electron trajectory in diffraction is 
demonstrated. 
 
2. Theory 

The Bohmian quantum trajectory method [9,10,14] 
considers that the wave function represents an 
objectively real field. Besides the field, there is a particle 
(Bohmian particle) represented mathematically by a set 
of trajectories, which are always well defined and vary in 
a definite way. In order to obtain the equation of motion 
of the Bohmian particle, firstly the wave function is 
rewritten in a polar form ( )expR iSψ = h , where R  
and S  are real representing the amplitude and phase, 
respectively. Inserting the wave function into the 
time-dependent Schrödinger equation (TDSE): 
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and then by separating the equation into real and 
imaginary parts one can obtain two associated equations: 
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Eq. (2) is referred to quantum Hamilton-Jacobi (HJ) 
equation. The quantum HJ equation differs from the 
classical HJ equation by the addition of the so-called 
quantum potential term, ( )2 2 2Q R mR≡ ∇h . The 
quantum potential is due to internal quantum forces. As 
in the classical HJ theory, the velocity field for 
Bohmian particle is defined as, 
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The quantum trajectory of the Bohmian particle 
associated to a given quantum state can thus be 
obtained by integrating the velocity field as, 
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Eq. (3) is referred to continuity equation, it guarantees 
that these quantum trajectories are the paths along 
which probability flows and the observable results can 
be exactly computed from the quantum trajectory [15]. 

The methods to calculate quantum trajectory can be 
divided into two broad categories [16]. The first one 
includes those methods to solve S  directly from the 
hydrodynamical equations, Eqs. (2) and (3). 
Computation is usually quite difficult [17] when 
evaluating the second-order spatial derivatives. Another 
group of methods deals with the problem in two steps. 
Firstly the wave function is obtained by solving the 
TDSE with a suitable time propagation scheme, then S  
is derived from wave function. Once S  is known, the 
quantum trajectories are calculated according to Eqs. (4) 
and (5). The main advantage of the second group of 
methods is that many robust methods have been 
developed to solve exactly the TDSE, e.g. split operator 
method for wavepacket propagation [18], multislice 
method [19] or Bloch wave method [20] for imaging 
simulation in electron microscopy. 

We employ the split operator method proposed by 

Feit et al. [18] for numerical solution of the TDSE. The 

formal solution of TDSE is ˆ( )( ) ( )iHdtt dt e tψ ψ−+ = h , 

where 
2

2ˆ ˆ ˆ( , )
2

H V t T V
m

= − ∇ + = +rh  is the Hamiltonian. 

The split operator method [18], with a third-order 

accurate formula in time, splits the exponential time 

propagator 
ˆ( )iHdte −  into three parts, 

( )ˆ ˆ ˆ ˆ2 2 3( )iHdt iTdt iVdt iTdte e e e o dt− − − −= +h h h h . The 

kinetic energy T̂  operator and potential energy V̂  

operator are diagonal in momentum and configuration 

space, respectively. So the time evolution operator, 
ˆiVdte− h , arising form the potential energy, is easily 

operated in the real space where it means a multiplication 

and a function evaluation in real space. While the time 

evolution operator, 
ˆ 2iTdte− h , arising form the kinetic 

energy, is operated in the momentum space where it also 

means a multiplication and a function evaluation in 

momentum space. The transformation between the 

momentum space and the real space can be achieved 
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effectively by fast Fourier transform (FFT). With the 

help of the FFT algorithm, this procedure is very 

efficient and very accurate. This method is 

unconditionally stable and norm preserving since only 

unitary operators are involved. Then the quantum 

trajectories are calculated according to Eqs. (4) and (5) 

by forth order Rung-Kutta integration scheme. 

In this work, we treat only the electron elastic 

scattering in solid. In general the difference between the 

real crystal potential and that of a model crystal 

composed of isolation atoms is very small [21]. For most 

of the inorganic crystals, crystal potential can be written 

as [21] ( ) ( )n i
n i

V ϕ= − −∑∑r r R r , where n  denotes 

the nth unit cell of the crystal and i  the i th atom in 

the unit cell. The atomic potential ϕ  can be obtained 

from inverse Fourier transform of the atomic scattering 

factor. For a qualitative study of the electron diffraction 

in crystal, we consider an analytical pseudo potential 

[22].                           
23
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where C , ω  and γ  modulate the value, period, and 
smoothness of the potential, respectively. An initial 
incoming plane wave of electrons can be approximated 
as a linear superposition of Gaussian wave packet, 
expressed as, 
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where σ  is the spatial dispersion, 0 0 0( , , )i i ix y z  the 
central position of the i th wave packet at time 0t = , 
C  the normalization constant, k  the wave vector and  
r  the position vector. 
 
3. Results and discussion 

We have simulated the elastic scattering of electrons 
in a modeled thin film crystal, whose potential 
parameters are: 20 eVC = − , 12 / 0.3 nmω π −=  and 

0.2γ = . Electrons are incident normal to a crystal 
surface along z-axis. The lattice constant is taken as 0.3 
nm. The modeled thin film crystal, whose thickness is 
0.6 nm, consists of three atomic mono-layers. The crystal 
has periodical cubic structure in x y−  plane. Fig. 1 
shows crystal potential in a cross-section plane ( x y−  
plane) parallel to the surface. The primary energy 

pE  is 
700 eV, corresponding to a de Broglie wavelength of 

0.046 nm.λ =  Initial incoming plane wave is 
approximated as a linear superposition of 200 200×  
Gaussian wave packets, uniformly distributed in the 
x y−  plane. The spatial dispersion of each Gaussian 
wave packet is: 0.06 nmx yσ σ= =  and 0.3 nmzσ = . 
The resulting plane wave is then launched from 

0.8 nmz = − (the lower surface is set as 0z = ). The 
time step dt  is 0.005 a.u. The initial positions of 
Bohmian particles are chosen according to the 
probability density function of electron incoming plane 
wave. 

Fig. 2 shows the evolution of electron wave function, 
by displaying snapshots of the probability density 
function of electrons scattered by the crystal potential at 
different times in a plane parallel to surface. We can see 
that the initial electron plane wave function splits into 
many diffraction channels. Fig. 2(a) shows the waves 
inside the solid where the diffraction channels are under 
formation. After electron wave penetrates the thin film 
crystal, diffraction is gradually becoming obvious via 
Talbot effect as shown in Figs. 2(b) and 2(c). In Fig. 2(b) 
the diffraction peaks represented by the maxima 
corresponds well with the minima of the periodical 
crystal potential in Fig. 1. Fig. 2(c) indicates that the 
diffraction pattern shifts to show opposite maxima and 
minima with respect to those in Fig. 2(b). This is due to 

Fig. 1 A cross-section plane of the crystal potential for 
electron scattering inside a modeled thin film crystal. 
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the Talbot effect, which is a near-field diffraction effect 
first observed in 1836 by Talbot [23]. It has important 
technological application in optics and electron 
microscopy. Talbot revivals behind crystals have been 
imaged directly in transmission electron microscopy [24]. 

In electron diffraction the periodical crystal plays the role 
of diffraction grating [25]. 

The time evolution of Bohmian particle trajectories 
representing electron diffraction is shown in Fig. 3. 
These particles are initially distributed according to the 
probability density function of electron incoming plane 
wave. Fig. 3 (a) shows the assembly of the particles at 
time 0.12 fst = . It is clear that their spatial distribution 
agrees with the probability density function at the same 
time shown in Fig. 2(b). A series of snapshots form an 
animation for the dynamic process of electron 
trajectories in diffraction. The result demonstrates that 
Bohmian quantum trajectory theory can provide an 
intuitive dynamics of the interaction process of electron 
and solid, meanwhile preserve the same accuracy of 
predication as made by conventional quantum theory. 
The continuity equation, Eq. (3), guarantees that [26] if 
initial positions of Bohmian particles are sampled from 
the probability density function at time 0t = , then the 
configuration of the particles is distributed according to 
the probability density function at any later time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Probability density function of electrons in x y−  
plane scattered by crystal potential: (a) t = 0.06 fs at z = 0.24 
nm ;  (b) t = 0.12 fs at z = 1.12 nm ; (c) t = 0.25 fs at z = 
2.88 nm. 
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Fig. 3 The assembly of Bohmian particles in x y−
plane: (a) t = 0.12 fs; (b) t = 0.25 fs. 
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4. Conclusion 
Bohmian quantum trajectory theory opens a new way 

to understand the phenomena of electron-matter 
interaction. The Bohmian particle trajectories reproduce 
the electron diffraction pattern very well. Such an 
example calculation shows its great useful application in 
future for a theoretical study of electron interaction with 
solids, surface and nanomaterials to replace the role of 
classical Monte Carlo electron trajectory method. Once 
electron inelastic scattering is included via an optical 
potential [27], the method can be applied to both the 
techniques of electron microscopy and electron 
spectroscopy. 
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